Fixed points and cycle structure of random permutations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unseparated pairs and fixed points in random permutations

Article history: Received 25 August 2013 Accepted 1 May 2014 Available online xxxx MSC: 60C05 60B15 60F05

متن کامل

On Fixed Points of Permutations

The number of fixed points of a random permutation of {1, 2, . . . , n} has a limiting Poisson distribution. We seek a generalization, looking at other actions of the symmetric group. Restricting attention to primitive actions, a complete classification of the limiting distributions is given. For most examples, they are trivial – almost every permutation has no fixed points. For the usual actio...

متن کامل

Cycle structure of random permutations with cycle weights

We investigate the typical cycle lengths, the total number of cycles, and the number of finite cycles in random permutations whose probability involves cycle weights. Typical cycle lengths and total number of cycles depend strongly on the parameters, while the distributions of finite cycles are usually independent Poisson random variables. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44,...

متن کامل

Fixed Points and Excedances in Restricted Permutations

In this paper we prove that among the permutations of length n with i fixed points and j excedances, the number of 321-avoiding ones equals the number of 132-avoiding ones, for all given i, j ≤ n. We use a new technique involving diagonals of non-rational generating functions. This theorem generalizes a recent result of Robertson, Saracino and Zeilberger, for which we also give another, more di...

متن کامل

Permutations with extremal number of fixed points

Abstract. We extend Stanley’s work on alternating permutations with extremal number of fixed points in two directions: first, alternating permutations are replaced by permutations with a prescribed descent set; second, instead of simply counting permutations we study their generating polynomials by number of excedances. Several techniques are used: Désarménien’s desarrangement combinatorics, Ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2016

ISSN: 1083-6489

DOI: 10.1214/16-ejp4622